Pontifícia Universidade Católica do Rio de Janeiro

César Enrique Leytón Cerna

Degradação da Amônia em Efluentes com Ácido de Caro

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio.

Orientador: Luiz Alberto Cesar Teixeira

Co-orientadora: Lidia Yokoyama

Rio de Janeiro Fevereiro de 2008

Pontifícia Universidade Católica do Rio de Janeiro

César Enrique Leytón Cerna

Degradação da Amônia em Efluentes com Ácido de Caro

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Luiz Alberto Cesar Teixeira

Orientador

Departamento de Engenharia Metalúrgica - PUC - Rio

Lídia Yokoyama

Escola de Química/UFRJ

Maurício Leonardo Torem

Departamento de Engenharia Metalúrgica - PUC - Rio

Juacyara Carbonelli Campos

Escola de Química/UFRJ

Prof. José Eugenio Leal

Coordenador Setorial de pós-graduação do centro Técnico Científico da PUC-Rio

Rio de Janeiro, 19 fevereiro de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da Universidade, do autor e do orientador.

César Enrique Leytón Cerna

Graduou-se em Engenharia pela Universidade Nacional de San Agustín de Arequipa, Perú.

Ficha Catalográfica

Leytón Cerna, César Enrique

Degradação da amônia em Efluentes com Ácido de Caro / César Enrique Leytón Cerna; orientador: Luiz Alberto Cesar Teixeira; co-orientadora: Lidia Yokoyama. 2008.

102 f.; il.; 30 cm

Dissertação (Mestrado em Ciência dos Materiais e Metalurgia)-Pontifícia Universidade Católica de Rio de Janeiro, Rio de Janeiro 2008.

Incluí bibliografia.

1. Ciência dos Materiais e Metalurgia – Teses. 2.Tratamento de Efluentes. 3. Amônia. 4. Ácido de Caro. I. Teixeira, Luiz Alberto Cesar. II. Yokoyama, Lídia. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos materiais e metalurgia. IV. Título.

CDD: 669

Esta dissertação é dedicada a você, meu querido pai. Embora não estejas mais comigo, viverá para sempre no meu coração.

Agradecimentos

Ao professor Luiz Alberto Cesar Teixeira, pela orientação e apoio para a realização deste trabalho.

À professora Lídia Yokoyama pela orientação neste trabalho.

À minha família pelo apoio constante, carinho e preocupação no desenvolvimento na minha vida profissional.

A meus amigos estudantes pelo apoio moral.

A meu grupo de trabalho de pesquisa pelo apoio moral e por oferecer também seus conhecimentos.

Ao CNPq, Capes e a PUC-Rio, pelo apoio concedido para a realização deste trabalho.

À Peróxidos do Brasil Ltda pelo apoio ao nosso laboratório através do Convênio PUC – PERÓXIDOS.

Aos professores, funcionários e colegas do Departamento de Ciência dos Materiais e Metalurgia.

Resumo

César Enrique Leytón Cerna; Luiz Alberto Cesar Teixeira. **Degradação de Amônia em Efluentes com Ácido de Caro**. Rio de Janeiro, 2008. 102p. Dissertação de Mestrado – Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

A presente pesquisa foi direcionada à degradação de amônia em efluentes industriais pela oxidação com Ácido de Caro. A amônia é considerada um poluente por ter efeitos ecotoxicológicos em corpos hídricos. A abordagem selecionada para remoção de amônia por oxidação levou à escolha do Ácido de Caro por este apresentar características de ser um poderoso agente oxidante e por ser este adequado a uma tecnologia limpa. Utilizou-se uma amostra de efluente sintético, com uma concentração de amônia de 100 mg/L para o estudo cinético experimental conduzido em regime de batelada em escala de laboratório para determinar as variáveis de influência mais significativas e seus níveis, em um planejamento fatorial 2³, levando em conta as três variáveis, catalisador [Cu²⁺] em mg/L, pH e razão molar H₂SO₅:NH₃. Foram calculados como variáveis resposta a velocidade inicial de degradação em mg/L.min e a porcentagem de remoção da amônia. Mediante análise estatística demonstrou-se que as variáveis mais influentes foram o pH e a razão molar H₂SO₅:NH₃, e em menor grau a presença de catalisador Cu²⁺. O Ácido de Caro mostrou ser mais eficiente em condições alcalinas do que em condições ácidas, e mostrou-se um sistema efetivo nas seguintes condições: [Cu²⁺]=1mg/L, pH=9, H₂SO₅:NH₃ = 48:1 adicionado em forma estagiada, o que levou a atingir uma concentração de amônia a valores menores de 20 mg/L em 150 min, a 25°C.

Palayras-Chave

Tratamento de efluentes; Amônia; Ácido de Caro.

Abstract:

César Enrique Leytón Cerna; Luiz Alberto Cesar Teixeira. **Degradation of Amonia in Effluents with Caro's Acid**. Rio de Janeiro, 2008. 102p. Master Dissertation— Department of Materials Science and Metallurgy, Pontifícial Catholic University of Rio de Janeiro.

The aim of this work is the degradation of ammonia present in industrial effluents by Caro's Acid. Ammonia is considered a polluntant because of its toxicological effects in aquatic resources. Caro's acid has been selected in the present study for the removal of ammonia because of its powerful oxidant characteristics and for it being used as a clean reagent. A sample with synthetic effluent with ammonia concentration grade of 100 mg/L was used for the experimental kinetic study conduced in batch reactor and laboratory scale for determination of the most significant variables and levels to develop a factorial design 2³, with three variables: catalyst [Cu²⁺] mg/L, pH and molar ratio H₂SO₅:NH₃. The considered response variables were the initial velocity of degradation and the ammonia removal percentage. Through statistic analysis, it was demonstrated that the most significant variables were pH and molar ratio H₂SO₅:NH₃, and, in lower importance, the presence of the catalyst Cu²⁺. Caro's acid has appeared as a possible oxidative in alkaline conditions, and was shown as an effective system in the following conditions: [Cu²⁺]=1mg/L; pH=9; H₂SO₅:NH₃ = 48:1 in the staged addition, leading to residual ammonia concentration values of less than 20 mg/L in 150 min, at room temperature.

Key-words

Effluent Treatment, Ammonia, Caro's Acid.

Sumário

1 . Introdução.	16
1.1.Objetivos do presente trabalho	19
1.1.1.Objetivos específicos	20
1.2.Relevância do presente trabalho	20
2 . Revisão Bibliográfica	21
2.1. Toxicidades da Amônia	21
2.2. Efluentes que contêm Amônia	22
2.2.1. Esgotos urbanos	22
2.2.2. Refino do Petróleo	23
2.2.3. Lixiviado de Aterros sanitários (Chorume)	24
2.2.4. Metalurgia	25
2.3. Legislação ambiental e limites de descarte de amônia	26
2.4. Equilíbrio Físico-químico da amônia	27
2.5. Termodinâmica da Degradação de Amônia	29
2.6. Processos de remoção de amônia	29
2.6.1. Tratamento Biológico	30
2.6.2. Remoção por Cloração "Breakpoint Chlorination"	34
2.6.3. Arraste com Ar "Air Stripping"	37
2.6.4. Troca lônica	38
2.6.5. Oxidação da amônia com Ozônio na presença e ausência de	
Peróxido de Hidrogênio	40
2.6.6. Tabela de comparação dos processos de remoção	41
2.7. Oxidação com ácido de Caro	42
2.7.1. Introdução	42
2.7.2. Diagrama de distribuição em função do pH	43
2.7.3. Termodinâmica do Processo	44
2.7.4. Trabalhos de oxidação da amônia com ácido de Caro	45

2.7.5. Uso de Catalisadores	46
3 . Metodologia	49
3.1. Características da Amostra	49
3.2. Determinação de concentração da amônia	49
3.3. Preparação do Ácido de Caro	50
3.3.1. Diluição do ácido de Caro	52
3.4. Procedimento experimental para degradação da amônia	53
3.5. Planejamento de experimentos	54
4 . Resultados e Discussão	59
4.1. Ensaios preliminares	59
4.1.1. Efeito da concentração de ác. de Caro na degradação de a	amônia 59
4.1.2. Resultados dos ensaios em branco	63
4.1.3. Efeito do pH na degradação de amônia	64
4.1.4. Efeito do catalisador na degradação de amônia	65
4.1.5. Efeito da temperatura na degradação de amônia	67
4.2. Resultados do planejamento fatorial	69
4.3. Degradação de amônia na legislação	81
4.4. Cinética da degradação de amônia	83
4.4.1. Influência do pH na cinética de degradação	85
4.4.2. Influencia da razão molar H ₂ SO ₅ :NH ₃	86
4.4.3. Influência do catalisador Cu ²⁺	87
5 . Conclusões	90
6 . Referências Bibliográficas	93
7 . Apêndice	98
7.1. Procedimento para determinação de amônia	98
7.2. Desenho fatorial de dois níveis e cálculo dos efeitos	99
7.3. Distribuição F	101

Lista de figuras

Figura 1-Diagrama de distribuição das espécies de amônia a 25 ºC	28
Figura 2–Diagrama E _H versus pH para espécies inorgânicas de	
nitrogênio a 25 °C	29
Figura 3-Remoção biológica de nitrogênio por dois estágios	32
Figura 4-Nitrificação em estágios separados	33
Figura 5-Curva geral durante a cloração na presença de amônia	36
Figura 6-Típico diagrama arraste de ar	38
Figura 7-Típico diagrama Troca iônica por zeólitas	39
Figura 8-Constante cinética a diferentes temperaturas e pH	40
Figura 9-Diagrama grau de dissociação e formação para ânion peroxo-	
mono-sulfato a 25 °C.	44
Figura 10-Diagrama de níveis de energia para uma reação química na	
presença e ausência de catalisador, mostrando energia de ativação E _a	
diferentes	48
Figura 11-Preparação do Ácido de Caro no laboratório	51
Figura 12-Diluição do Ácido de Caro no laboratório	52
Figura 13-Fluxograma das etapas envolvidas no estudo da degradação	
de amônia com Ácido de Caro.	54
Figura 14-Degradação de amônia com o tempo em função dos	
excessos de ácido de Caro – ensaios preliminares. Temper. ambiente,	
pH=10,5	60
Figura 15-Degradação de amônia com o tempo em função dos	
excessos de ácido de Caro – ensaios preliminares. Temperatura	
ambiente, pH=10,5. Adição de Ácido de Caro em quatro estágios	61
Figura 16-Resultados comparativos da adição de ácido de Caro em	
uma única etapa e em vários estágios, pH=10,5	63
Figura 17-Resultados em Branco em função do pH	63
Figura 18-Resultados da degradação de amônia para pH diferentes	
com adição de ácido de caro estagiado e H ₂ SO ₅ :NH ₃ =6,4:1	65

rigura 19-Resultados na degradação de amonia com catalisador	
[Cu ²⁺]=1 mg/L, H ₂ SO ₅ :NH ₃ =6,4:1, em diferentes pH	66
Figura 20-Resultados comparativos na degradação de amônia em	
presença e ausência de catalisador, razão molar H ₂ SO ₅ :NH ₃ =6,4:1,	
[Cu ²⁺]=1 mg/L, pH=9,5	67
Figura 21-Resultados comparativos na degradação de amônia pelo	
efeito da temperatura, razão molar H ₂ SO ₅ :NH ₃ =9,6:1, pH=10,5	68
Figura 22-Resultados comparativos na degradação de amônia pelo	
efeito da temperatura, T=40 °C, H ₂ SO ₅ :NH ₃ =9,6:1	69
Figura 23-Resultados dos experimentos do planejamento fatorial	
estatístico realizados a pH=8	71
Figura 24-Resultados dos experimentos do planjamento fatorial	
estatístico realizados a pH 9	72
Figura 25-Resultados dos experimentos do planejamento fatorial	
estatístico realizados a pH 8,5	73
Figura 26-Testes em branco comparativos na degradação de amônia	
pelo efeito do pH	74
Figura 27-Gráfico de Pareto para os efeitos – comparação entre os t	
calculados	77
Figura 28-Curva de contorno da velocidade inicial de degradação com	
razão molar H₂SO₅:NH₃ – pH	79
Figura 29-Curva de contorno da velocidade inicial de degradação de	
amônia em função da concentração de Cu ²⁺ - H ₂ SO ₅ :NH ₃	80
Figura 30-Curva de contorno de velocidade inicial da degradação de	
amônia, Cu ²⁺ -pH	81
Figura 31-Cinética na degradação de amônia, pH=9, [Cu ²⁺]=1 mg/L,	
$H_2SO_5:NH_3 = 48:1$ estagiada.	82
Figura 32-Curva da conc. de amônia do teste em branco a pH=9	83
Figura 33-Decomposição do Ácido de Caro (razão molar 9,6:1) com	
respeito ao pH	84
Figura 34-Gráfico de degradação da amônia com Ácido de Caro com	
respeito ao pH, [Cu ²⁺]=0 mg/L	85
Figura 35-Gráfico de degradação da amônia com ácido de Caro com	

respeito a H ₂ SO ₅ :NH ₃ , [Cu ²⁺]=0 mg/L	87
Figura 36-Gráfico de degradação da amônia com ácido de Caro com	
respeito ao catalisador [Cu ²⁺], H ₂ SO ₅ :NH ₃ =9,6:1	88

Lista de tabelas

Tabela 1-Classificação geral de microorganismos por fontes de energia	l
e carbono	31
Tabela 2-Constante cinética a diferentes temperaturas e pH	40
Tabela 3-Tabela de comparação dos processos de remoção de amônia	41
Tabela 4-Propriedades físicas do ácido de Caro	42
Tabela 5-Valores termodinâmicos da reação da amônia e ânion	
peroxo-mono-sulfato	45
Tabela 6-Composição do equilíbrio da mistura do Ácido de Caro	50
Tabela 7-Quantidades requeridas para a produção do Ácido de Caro	51
Tabela 8-Diluição do Ácido de Caro ao 10 %	52
Tabela 9-Níveis das variáveis independentes	56
Tabela 10-Matriz original do planejamento fatorial estatístico	57
Tabela 11-Matriz codificada do planejamento fatorial estatístico	57
Tabela 12-degradação de amônia – resultados preliminares	60
Tabela 13-Degradação de amônia – resultados preliminares – adição	
estagiada de oxidante.	61
Tabela 14-Remoção de amônia em função do pH com adição de ácido	
de Caro em vários estágios H₂SO₅:NH₃=6,4:1	64
Tabela 15-Degradação de amônia na presença de catalisador	
[Cu ²⁺]=1 mg/L, H₂SO₅:NH₃=6,4:1, adição estagiada.	65
Tabela 16-Matriz do planejamento fatorial estatístico	69
Tabela 17-Tabela ANOVA ou de análise de variância	75
Tabela 18-Tabela efeitos das variáveis e interações	76
Tabela 19-Coeficientes de regressão	78
Tabela 20-Resultados da degradação da amônia do experimento 8 do	
planejamento fatorial, com adição de ácido de Caro em estágios:	
pH=9, [Cu ²⁺]=1 mg/L, H_2SO_5 :NH ₃ = 48:1 estagiada.	81
Tabela 21-Ensaio em branco a pH=9	83
Tabela 22-Intervalo de medida e número de medições	99